
Aperture Synthesis Labs Using the VSRT Interferometer

If not yet familiar with the use of the VSRTs or of the analysis software VSRTI Plotter,

you should first read the document IntroductiontoVSRT.pdf.

A. The VSRT Primary Beam

In general, before making measurements with an interferometer one should be familiar

with the important characteristics of the individual antennas. One such characteristic

about the VSRT interferometer which you will need to know for the subsequent labs is

the width of the beam of each feed. The beam of the individual antennas that make up

an interferometer is called the primary beam. Sources in the sky which are located away

from the center of the primary beam can still be detected but the detected flux density will

be decreased by a factor equal to the primary beam sensitivity at that position. When

using an array of antennas to obtain an image of a radio source, the primary beam of the

individual antennas essentially provides an upper limit to the field of view of the image,

since radio emission coming from directions outside the primary beam will appear fainter,

if detected at all.

Observing Procedure:

1. Place the feeds as close to each other as possible and place a single helical CFL

(standing on its end) at a distance of about two meters and in line with the midpoint

between the feeds, as shown in Figure 1.

2. Check the “pointing” of each feed by altering its pointing direction while watching the

signal in the single scan spectrum. Adjust the pointing direction of the feeds one at a

time to ensure that you get the maximum signal when the CFL is at the 0o position.

3. Press the “record” button, and give the file a name that contains a pair of single

quotes with the number ‘0’ inside the quotes. For example, the file name can be:

Juanita Beam‘0’ 15Sep. For this file, the ‘0’ means that these data correspond to

when the CFL was located at a position angle of 0o. It is very important for reading

the data into the VSRTI Plotter package for the data analysis that your data file
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FIG. 1: VSRT set-up for Plot Beam lab. The feeds are placed close together and aimed at a CFL,

standing on end, at a distance of 2 m.

contain the single quotes with a number between – the VSRTI Plotter program will

look for the single quotes to read in the value of the angular position of the CFL.

4. While the data is recording, watch the screen and stop the recording after about 50

scans. Take note of the antenna temperature and rms.

5. Keeping the distance of the CFL from the mid-point of the feeds roughly constant,

move the CFL along an arc to a different position as depicted in Figure 2. Do NOT

turn the feeds to keep them facing the CFL. Measure the angular position of the CFL

relative to the midplane of the baseline. This is most easily accomplished using a

little trigonometry, i.e. by measuring the perpendicular distance of the CFL from the

mid-plane line, dividing by the distance of the CFL from the feeds and finding the

inverse sine.

6. Click on “Record” and give the same file name as before but with the new value of the

angular position of the CFL, in degrees, between the single quotes. Record for about

100 scans.

7. Repeat steps 5 and 6 for all angles from −45o to +45o in steps of 5o. Increase the

integration times as you get to larger angles - use about 60 scans for angles above 12o
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FIG. 2: Keeping the feeds still, move the CFL along an arc, keeping it the same distance from

the feeds, and determine the angle by measuring the distance of the CFL from the center line and

calculating the arcsin of that distance divided by the distance of the CFL from the feeds.

and about 100 scans for angles above 20o. At the larger angles, the signal will get

weaker and so you’ll want a smaller uncertainty to increase the signal to noise.

8. Put all your data files into a single folder.

Analysis:

1. Open the VSRTI Plotter program, and select “Plot Beam.” Open the folder with

your data files, select all the data files, and drag-and-drop the whole set into the “data

files” box on the right side of the VSRTI Plotter window. A plot of your data should

appear instantly on the left.

2. Select “Show Beam Pattern.” You’ll instantly see a curve representing the theoretical

beam pattern for an antenna with the specifications set in the boxes to the right.

3. Try changing the value of the input parameters and then click on “Update.” Note

how the model curve changes.
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4. Note that the bottom of the curves don’t match up. This is because of noise in

the system...you’ll never get a zero signal, even when there is no source to detect. So,

adjust the “noise” level until the theoretical and observed curves match at the bottom.

You can then adjust “D” some more until the model curve matches the data.

5. When the curves match as best that you can make them, note the value of “D.” This

is your measured value of the effective diameter of the feeds (in the same units as that

used for λ input box, which, in the default setting, is cm). For comparison, use a

ruler to measure the physical diameter of each feed. How does this compare with your

inferred effective D?

6. Move the mouse to the plot screen and right click to save the plot as a JPEG. Include

this plot in your report.

7. Note the full-width-at-half-maximum (FWHM) of the beam pattern. This is the pri-

mary beam width of the VSRT feeds.

8. Convert your primary beam width to radians and compare with that given by

FWHM = 1.02
λ

D
,

where D is the diameter of the antenna and λ is the wavelength (2.5 cm) of the

radiation.

9. Try different values of “D” and note how it changes your beam pattern. Specifically,

when “ D” increases, what happens to the beam pattern. Now adjust λ and note how

the beam pattern changes. Note, in particular, how the width of the beam depends

on λ and D.

Examination of Beam Pattern without VSRT Equipment:

If you don’t have a VSRT Interferometer or any data, you can still use this tool to

explore how an antenna’s beam depends on the parameters. Click on “Show Beam Pattern,”

and adjust the values of “D” (the diameter of the antenna) and λ (the wavelength of the

radiation) and see how the beam pattern changes. Measure the FWHM of the beam pattern

and compare to that given by

FWHM = 1.02
λ

D
,

To save the plot as a jpg or eps file, move the mouse to the plot screen and right click.
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B. Interferometric Observation of a Single Resolved Source

The Visibility Function:

When radio astronomers use an array of antennas to make an image of a radio source,

each pair of antennas acts as an interferometer. And, the data used to make the images are

the outputs from the interferometers as a function of the “baseline” – a vector defined by

the separation distance of the antennas and the direction of their relative orientation. The

response of each interferometer also depends on the direction of the radio source in the sky

and on the shape and size of the radio source. The dependence on the direction of the radio

source is called the fringe function, and is a well known function. The dependence of the

detected signal on the source structure, as a function of baseline divided by the wavelength, is

the “visibility function,” V ( b
λ
). Note that the independent variable is not simply baseline,

but baseline divided by wavelength.

In professional radio astronomy interferometric observations, the fringe function is re-

moved from the data leaving only the visibility function. In this lab, we place the source in

line with the center of the baseline and keep the source at that position. The fringe func-

tion, then, does not come into play, and so the response of the interferometer is purely the

visibility function. To obtain the visibility function, you will need to make measurements

with a range of baselines.

Also, to keep the lab relatively simple and straight-forward, we only measure the visibility

function in one dimension. Our visibility function, therefore, is easily displayed in a simple

graph, and is shown in the graph window at the left side of the VSRTI Plotter window.

Observations of a Single Resolved Source

When observing a source with a large angular size, the radio waves enter the antennas

over a range of direction angles, and this causes a decrease in the combined signal from the

two antennas. This decrease is more pronounced for antennas that are further apart. As a

result the total detected power on longer baselines for a large source will be less than that

from a smaller source with the same total flux density. And, similarly, interferometers with

greater distances between the antennas are more sensitive to the source’s angular size. A

shorter-baseline interferometer, therefore, will have less of a decrease in the detected power

than will an interferometer with a longer baseline. This effect is commonly described by

saying that the longer baselines “resolve out” some of the flux of the source. And, the longer
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FIG. 3: A straight-tubed CFL stands on end behind a gap produced by a pair of metal sheets.

The metal sheets are block the view of the sides of the CFLs.

the baseline, the more of the flux is resolved out.

By plotting the visibilities (for a source located at θ = 0) for a range of baseline distances

one can, then, infer the angle over which the flux density of an extended source (i.e. not a

point source) is distributed.

In this lab, you will obtain and plot the visibilities vs. baseline and discover the

baseline-dependence of the detected power, revealing that the CFLs are not really point

sources.

Observing Procedure:

1. Place a straight-tube CFL, standing on its end (so that it has a rectangular shape as

viewed from feeds) and at the mid-plane position (θ = 0).

2. Place two metal sheets slightly in front of the CFL by a few cm, but with a gap, equal

in width to the CFLs (about 4.5 cm), for the radiation to pass through, as shown in

Figure 3. The metal sheets should be tall enough to reach the top of the CFL; paper

clipping two pieces of scrap aluminum to metal book ends works well. (The metal

sheets are used to solve the problem posed by the three-dimensionality of the CFLs.

See the Appendix, at end, for more discussion.) The gap between the edges of the

metal sheets should be 2 meters from the feeds.

3. Start by placing the feeds one above the other (so that their horizontal distance is

zero), as shown in Figure 4.
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FIG. 4: Feeds are aligned vertically to produce a zero horizontal separation distance. (Note, this

should only be done for rectangular sources (or real point sources).

4. Click “record,” and in the file name type ‘0’ between single quotes, to represent a

baseline distance of 0. Record until n ≈ 50.

5. Move the feeds to a horizontal separation distance of 2 cm by moving each of them 1

cm in opposite directions. Click “record,” and put the value of the baseline distance

(in cm) between the single quotes.

6. Increase the separation distance of the feeds by another 2 cm. Keep the distance of the

feeds from the gap constant by moving them along an arc centered on the gap. Also,

turn the feeds as you move them so that they are always facing the gap. Take care to

ensure that the feeds are exactly the same distance from the gap. Click “record,” use

the same file name but with the new value of the baseline distance, in cm, between

the single quotes.

7. Repeat the last step, always increasing the separation distance of the feeds by 2 cm,

up to a separation distance of 60 cm. (See Appendix for a discussion of the maxi-

mum baseline you can use.) When the detected power gets below 15 K, increase the

integration time to 100 scans.

8. Replace the straight-tubed CFL with a larger helical CFL and widen the gap to match

its width (about 7.5 cm). Repeat the above experiment. Save the data into files with

a different name (and store in a different folder).
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Analysis:

1. Open VSRTI Plotter and select “Plot Visibilities.” Drag-and-drop the data files for

the set-up with the smaller gap into the data files box. You should see a graph of

detected power vs. baseline/λ that decreases with increasing b/λ.

2. Click on “Display Model Visibility”, set T2 = 0 and for “shape1” select “rectangular.”

Adjust the values of T1 and Φ1 until the curve fits the data. (The equation of the

model is given in the Appendix, at the end.) The value of Φ1 is the apparent angular

size of the CFL in radians according to the data. This implies a linear size, l, of the

CFL given by

l = Φd

where d is the distance of the CFL. (Recall that a body’s apparent angular size in

radians is approximately equal to its linear size divided by its distance.) If you followed

the instructions here your distance, d, is equal to 2 meters. Compare your inferred

value of l to the linear distance across the gap between the metal plates. These values

should agree, within experiemental error.

3. Save an image of your graph by right clicking on the plot window.

4. Click “Delete data” and then drag-and-drop the files for the data with the wider gap.

How does this change the plot on the left? Don’t worry about the absolute value of

the measured power between the two plots, since they involved different lamps. Focus,

primarily, on the difference in the shape.

5. Find the best fit value of Φ1 and again calculate the inferred value of l and compare

with the setting you used (∼ 7.5 cm).

6. Note that in this experiment, the CFL never moved relative to the midpoint of the

baseline. In this experiment, therefore, the change in the measured power is not due

to the same concept demonstrated in the “Plot Beam” lab. In this lab, the source

was stationary, but the feeds were moved to different baselines. You measured the

interferometer response as a function of baseline distance. This is called the “visibility

function.” Discuss the shape of the visibility function for an observation of a resolved

source and how this shape changes as the size of source is decreased.
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7. By extrapolation, try to infer what the shape of the visibility function is for a point

source. Test your answer by viewing model curve (“Display Model Visibilities”) when

the value of Φ1 us set to 0 (remember to click “Update”). When the visibility function

is such a shape, then no angular size of the source can be inferred and so this indicates

when a source is unresolved.

8. Discuss why real interferometric observations of radio sources involve more than one

pair of antennas. Consider the fact that with three antennas, for example, there are

three pairs of antennas, and each pair can involve a different baseline distance. How

does observing with a large number of antennas, such as with the VLA, provide the

information needed for radio astronomers to obtain images of resolved radio sources?

(Hint: consider the graph you created to reveal the visibility function and how quickly

the data for this graph could be obtained if you had more than two feeds.)

9. Consider, and discuss, the resolution of an array of antennas as it relates to the linear

size of the array. Is an array which includes large baselines more or less capable than a

smaller array of inferring the structure of a compact source. For an array with a range

of baselines, which baselines determine the resolution – the longest or shortest? Write

a mathematical relation to determine the resolution angle of an array of antennas.

10. Consider if you observed a large source with a large array which involved only very long

baselines (such as VLBI). Explain why this situation might result in a null detection.

It is, therefore, not a good idea to observe a radio source with an array with too good

resolution. When planning an observation of a known source, you should pick the

instrument whose resolution best matches your source.

9



C. VSRT Observation of a Pair of Sources

Observing a pair of sources, separated by an angle large relative to the resolution of

the interferometer, is, essentially, combining the interferometer responses to sources at two

different positions. As mentioned in the previous lab the interferometer response has a

dependence on source position. In the same way that light passing through two slits produces

a striped pattern with the distance between the stripes depending inversely on the distance

between the slits, the visibility function of a pair of sources has a sinusoidal dependence on

b/λ with a wavelength (or “spatial period”) that is inversely proportional to the angular

separation of the sources. By plotting the visibilities for a range of baseline distances one

can, then, identify a binary source and determine the separation angle of the sources.

In this lab, you will use two CFLs to reveal the sinusoidal shape of the visibility function

for two sources and show the relation between the angular separation of the CFLs and

periodicity in the visibility function.

Observing Procedure:

1. Start by placing the feeds one above the other (so that their horizontal distance is

zero).

2. Place a pair of helical CFLs, both standing on end, at a distance of 2 meters from the

feeds, and separated by 40 cm in the perpendicular direction. Aim the feeds at the

midpoint between the CFLs. A picture of the set-up is shown in Figure 5.

3. Click “record,” and put a ‘0’ between the single quotes in the file name (to represent

a baseline distance of 0). Record until n ≈ 50.

4. Move the feeds to a horizontal separation distance of 2 cm by moving each of them 1

cm in opposite directions. Click “record” and put the value of the baseline distance

(in cm) between the single quotes.

5. Repeat step 4, always increasing the separation distance of the feeds by 2 cm, up to a

separation distance of 60 cm. Turn the feeds as you move the CFLs so that they are

always facing the midpoint between the two CFLs. (See the Appendix for a discussion
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FIG. 5: Two helical CFLs separated by 40 cm at a distance of 2 m from the feeds. The picture

was taken when data was being recorded with the feeds separated by about 20 cm

of the maximum baseline you can use.) When the antenna temperature is below 30 K

integrate for 60 scans and when it is below 15 K integrate for 100 scans.

6. Rearrange the CFLs so that they are separated by 30 cm and repeat the above proce-

dure but make sure that the file names are different, and/or place them into a different

folder. Obtain a third data set for CFLs separated by 20 cm.

Analysis:

1. Open VSRTI Plotter and select “Plot Visibilities.” Drag-and-drop the data files for

the 40-cm separation distance. You should see a quasi-sinusoidal function appear,

whose amplitude decreases with baseline distance. The decreasing amplitude is due

to the resolving of the individual CFLs, as you demonstated in the observations of

a single source lab. The oscillations, though, indicate that there is a second source,

away from θ = 0.

2. Measure the distance between peaks, in terms of b/λ, in the sinusoidal function. Call

this Θ. Calculate the angular separation of the CFLs in radians from θ(radians) =

x/d, where x is the linear separation distance between CFLs.
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3. Click “Delete Data” and then drag-and-drop the data set for CFLs separated by 30

cm, and measure the distance between peaks and calculate θ from x/d. Do the same

with the data set for CFLs separated by 20 cm.

4. In a separate plotting program (such as Excel), plot Θ vs. θ(in radians). What is the

relation between these two parameters? Do your data fit the relation Θ = 1/θ?

5. Drag-and-drop each data set into the data files box again. This time click on “Display

Model Visibility” and set “shape1” and “shape2” to “rectangular”. (Note: if you

placed the CFLs on their sides, with the ends aimed at the feeds, then you should

select “‘uniform disk” for the shapes.) Adjust the five input parameters (Φ1 and Φ2

are the angular sizes of the CFLs in radians, T1 and T2 are the powers, in Kelvin, of

each lamp, and θ is the angular position, in radians, of the second lamp relative to the

first, as seen from the center of the feeds baseline) until the data best fit the curve.

(The equation of the model is given in the Appendix, at the end). For your best fit

models, write the values of θ and calculate the inferred linear separation distances of

the CFLs using

x = θd.

Compare with the actual values of x in the set-ups.

6. As in the “Observations of a Single Resolved Source” lab, the CFLs did not move

relative to the midpoint of the baseline and so your plot again shows the visibility

function. Discuss the shape of the visibility function for an observation of a double

source and how this shape changes when the angular separation between the two pieces

change.

7. Imagine planning an observation at a wavelength of 6 cm of a double radio source in

which the sources are separated by 30 arcseconds. If planning an observation of this

source, what ranges of baselines would be needed to map this double source?
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D. VSRT Observations of a Mystery Source

[Note to instructors: If you wish to assign this lab and would like advice about how to

set up a mystery source that is solvable, feel free to e-mail me (marrj@union.edu).]

Your instructor will have some number of CFLs inside a cardboard box. Your goal, now,

is to use the feeds, at a range of baselines, repeating the procedure of the previous lab but

with the CFLs hidden in the box, obtain a visibility function, analyze it, and make a model

of what you think the “structure” of the mystery source is (how many CFL’s and in what

positions?).

Remember to keep in mind the main principles that were demonstrated in the previous

two labs. How does the visibility function appear with a resolved source? How does the

visibility function appear for a single pair of sources separated by a given angular distance?

Extrapolation of these principles should help you to, now, infer a slightly more complex

stucture. You cannot use the “Show Visibilities” button to help you in this lab, since the

model to match the mystery source has not been put in.

Here are some principles from the previous two labs which we give here as hints for you

1. As demonstrated in the single-resolved-source lab, the longer baselines resolve out more

of the structure of an extended source. This means that the zero-baseline visibility should

contain the flux from the entire source. 2. Each pair of sources produces a periodic visibility

function with period given by Θ = 1/θ. Considering the principle stated in no. 1, each

periodicity must have a maximum at the zero baseline...so to identify periodicities, start at

b/λ=0 and look for the next peak after that.
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E. The Fourier Transform Relation Between Image Brightness Distribution and

Visibility Function

Go to http://minerva.union.edu/marrj/radioastro/labfiles.html, download TIFT.zip, and

extract all the files. Go into the TIFT folder and make a shortcut of TIFT Chooser.jar on

your desktop. Open TIFT Chooser and then open TIFTLab.pdf and follow the instructions.
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Appendix: Additional Notes:

1. Model Equation

The model used in Plot Visibilities is given by

T =

√
T 2
A + T 2

B + 2TATB cos(
2πb sin(θ)

λ
),

where the power of each individual CFL, as a function of baseline, b, for a rectangular

source, is

TA = T1(
λ

2πbΦ1

)

√
2(1 − cos(

2πbΦ1

λ
))

and

TB = T2(
λ

2πbΦ2

)

√
2(1 − cos(

2πbΦ2

λ
)),

and for a “uniform disk,”

TA = T1
(J1(πΦ1b/λ)

(πΦ1b/λ))

where J1 is the first order Bessel function of the first kind.

2. Maximum Baselines

The interferometric equations for the amplitude of the visibility assume that the rays

approach the feeds in parallel rays, which is clearly true for a source that is infinitely far

away. For these labs, however, the CFLs are only about 2 meters away while the feeds get

up to tens of centimeters apart. The assumption of parallel rays, therefore, can break down

if the feeds are put too far apart. The assumption of parallel rays is used in the derivation

of the equation to assign the path-length difference, which causes the phase difference in

the two feeds. For the results of these labs to not be significantly altered by an error in the

assumed phase difference, the difference between the model and true path length difference

needs to be within 1/8th of λ, so that the model and true phase differences stay within π
4
.

This constraint is satisfied if

bx

d

(
1 − 1√

1 + (b/2d)2

)
< 0.003

where b is the baseline distance, x is the largest linear distance between points of radio

emission (i.e. the diameter of the CFL for the Single-Resolved Source lab, and the distance

between CFLs in the Double-Source lab), and d is the distance along the mid-plane from

the CFL plane to the feeds plane (following the instructions of the labs here, d = 200 cm).
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For the Single-Resolved Source lab, in which x=5 cm, one should keep the baseline shorter

than 160 cm.

For the Double-Source lab, where the largest x = 40 cm, the baselines should be kept

under 80 cm.

3. Apparent Angular Size of CFL’s

When conducting the “Single Resolved Source” lab, if the metal screens are not used to

set the width, the apparent size of the CFL will be larger than the CFL itself. This occurs

because of the 3-dimensionality of the situation. The feeds detect radio emission from the

back of the CFL as well as the front. As the feeds are moved to larger baselines, their view

of the CFLs include the sides of the CFL. The effect is that the CFLs appear like larger

sources. The inferred diameter of the CFL without the metal shields in the single-resolved-

source lab is about 7.5 cm, while the physical diameter of the CFL is, in reality, about 4 to

5 cm. For this reason, we recommend that the single resolved source lab be conducted with

a pair of metal shields in front of the CFL to, effectively, make a slit with adjustable width.

The shields block the radiation from the sides when the feeds move to larger baselines.
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