
How the VSRT Simulates a Cross-Correlation Interferometer

This document provides a detailed discussion of the mathematical theory behind how the

VSRT Interferometer works, and how it simulates a modern cross-correlation interferometer

that professional radio astronomers use. This discussion, in general, is not intended for

students. Instructors are advised to read this and decide for themselves whether their

students would benefit from such a discussion. The labs discussed in “VSRTlabs.pdf” can

be conducted without a discussion of the mathematical theory and the students will still

attain an intuitive understanding of how aperture synthesis data leads to images of radio

sources.

This discussion, here, in fact, is designed primarily for instructors who have some famil-

iarity with aperture synthesis, although we do provide a very quick synopsis of the basic

idea. The VSRT Interferometer is different, and simpler, than a professional radio astron-

omy interferometer, and so the purpose of this document is to provide an explanation of

how the VSRT interferometer produces (mostly) the same kind of data.

I. SOME BASICS OF APERTURE SYNTHESIS

In most professional radio astronomy aperture synthesis instruments, a number of anten-

nas arranged in a designed array, with assorted “baselines” (separation distances and direc-

tions between antennas), receive the radiation from a given source simultaneously. Each pair

of antennas, with a specific baseline, act as an interferometer in which the output signals

are cross-correlated. Correcting for a few systematics, the cross-correlations lead to what

is known as the “Visibility function,” which is a complex-valued function of the baseline

vector, V (~b), where ~b is the projection of the baseline onto the sky plane. An image of the

source is then obtained via the Fourier transform of the Visibility function,

I(x, y) = FT [V (~b)],

where x and y are angles on the sky and FT indicates the Fourier transform of the argument

inside the square brackets, [ ]. In the observation of some source, the Visibility for any given

baseline vector contains an amplitude and a phase and so is represented by

V (~b) = Aeiφ, (1)
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where the real part is given by Acos(φ) and the imaginary part is Asin(φ).

For these labs, we simplify the discussion and consider just the two-dimensional situation

in which the source structure and the antennas are located in a single plane, in which case

the baselines and the source structure are each one-dimensional.

For a single point source located an angular distance θ (in radians) from the center of the

map (called the “phase center”), A = E2
0 and φ = 2πb sin(θ)

λ
, where b is the baseline distance.

For a number of point sources the visibilities due to all the individual sources simply add.

For N sources, the total Visibility for baseline b is

VT (b) = Aeiφ =
N∑
k=1

Ake
iφk =

N∑
k=1

E2
kexp(

2πb sin θk
λ

) (2)

The relation between the magnitude of any particular Visibility and the Visibilities due to

each source is given as the square root of the sum of the squares of the total real part and

the total imaginary part, i.e.

A =

√√√√( N∑
k=1

Ak cosφk

)2

+

(
N∑
k=1

Ak sinφk

)2

, (3)

which is equivalent to

A =

√√√√ N∑
k=1

A2
k cos2 φk +

N∑
k=1

N∑
l>k

2AkAl cosφk cosφl +
N∑
k=1

A2
k sin2 φk +

N∑
k=1

N∑
l>k

2AkAl sinφk sinφl.

(4)

Using the trig identities

cos2A+ sin2A = 1 (5)

and

cos(A−B) = cosA cosB + sinA sinB (6)

we can be simplify Equation 4 to

A =

√√√√ N∑
k=1

A2
k +

N∑
k=1

N∑
l>k

2AkAl cos(φk − φl). (7)

The phase of the total Visibility can be obtained from the arctan of the total imaginary

part divided by the total real part. The VSRT interferometer does not measure the phase,

though, and so we do not need to derive the phase equation here.
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Since the Visibility function is the Fourier transform of the image, the shape of the

Visibility function is determined by the structure of the source. Even without knowledge of

the phases, the magnitudes of the Visibility function contain much significant information

about the structural aspects of the source. For example, if observing a pair of equally bright

point sources, the magnitudes will oscillate with a wavelength that is inversely proportional

to the angular distance between the point sources. More specifically,

b̄

λ
=

1

∆θ
(8)

where b̄ is the wavelength of the Visibility oscillations and ∆θ is the angular separation of

the point sources.

And, if observing a single but resolved source, the magnitudes will be a decreasing function

with baseline length and the rate of decrease will be inversely proportional to the angular size

of the source. For a source with a Gaussian brightness profile, for example, the magnitudes

will also decrease with a Gaussian profile, and the half-maximum width of the magnitudes

as a function of baseline will be inversely proportional to the half-maximum width of the

source brightness distribution.

II. THE VSRT INTERFEROMETER

Information about the components and assembly of the VSRTs can be found at

http://www.haystack.mit.edu/edu/undergrad/VSRT/index.html.

The VSRTs come with satellite TV dishes, which are needed for observations of the

Sun, but for the labs in the classroom the dishes are not needed and so in these labs the

feeds act as the antennas. In the following, then, the words “feeds” and “antennas” are

interchangeable.

A. How the VSRT Interferometer Works

The VSRT interferometer differs from modern interferometers used by radio astronomers

today in two significant ways. First, the signals are added instead of cross correlated (i.e., it

is an additive interferometer) and, secondly, the two feeds involve different mix-down (or LO)

frequencies. Therefore, when the signals are combined a beat signal (with frequency about
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FIG. 1: The feeds (acting as antennas) separated by a distance b recieve tadiation from the source

at position angle θ relative to the midplane position.

500 kHz) results. The end result, however, is that the response of the VSRT interferometer

mimics, in many ways, a standard cross-correlation interferometer, as we show below.

First consider the radiation from a single source entering the two feeds and the detected

power that exits the square-law detector. We’ll denote the baseline distance between the

feeds as ‘b,’ and, assuming that the distance of the source is much larger than b, we assign

the position of the source by its direction angle, θ, relative to the mid-plane between the

feeds. Figure 1 shows the arrangement.

The electric field entering each feed is

Ea = E0 cos(2πνt) and Eb = E0 cos(2πνt− φ), (9)

where the phase difference, φ, is due to the extra path length to the second antenna and is

given by

φ = 2π
b sin θ

λ
. (10)

The induced voltages (which are proportional to the electric fields of the incident waves) are

then mixed down with frequencies νa and νb, added, and squared, yielding

V 2
T = V 2

0 (cos2[2π(ν−νa)t]+2 cos[2π(ν−νa)t] cos[2π(ν−νb)t−φ]+cos2[2π(ν−νb)t−φ]). (11)

The output signal we detect is the beat signal, which occurs because of the middle term. So,

ignoring the first and third terms, and using 2cosAcosB = cos(A+B) + cos(A-B), we get

V 2
T = V 2

0 (cos[2π(2ν − (νa + νb)t− φ] + cos[2π(νb − νa)t+ φ]) (12)
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FIG. 2: Vectors of magnitudes Sk and phase angles relative to the x-axis of (2π(νb− νa)t+φk) are

added to make a total vector of magnitude ST .

Only the second term passes through the low-pass filter, and so we find that the detected

signal is

V 2
T = V 2

0 cos[2π(νb − νa)t+ φ]. (13)

This, now is, simply, the beat signal. For simplicity of notation, we will write the amplitude

of the beat signal as ‘S’, and so the last equation becomes

S = S0 cos[2π(νb − νa)t+ φ]. (14)

Now consider the total power in the beat signal when there are N sources. In general,

the sources are incoherent and so we must add the powers (which are proportional to V2).

The total power in the beat signals of N sources, then, is given by

ST =
N∑
k=1

Sk cos[2π(νb − νa)t+ φk], (15)

where Sk is the power in the beat signal from the kth source and φk is the phase delay to

the second feed from the kth source. Note that we now have the sum of many numbers each

multiplied by a cosine term. This is mathematically identical to summing the x-components

of a series of two-dimensional vectors, with magnitudes of Sk and angles relative to the x-axis

of (2π(νb − νa)t+ φk), as represented by Figure 2.

And, this sum, then, must equal the x-component of the resultant vector. Now, since

the angles of all these vectors depend on time identically, they all rotate in the x-y plane
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together at angular frequency 2π(νb − νa), and so the resultant vector also rotates at this

frequency. Therefore, by a suitable choice of our t = 0 time, we can define the phase of the

resultant vector to be zero and so that

ST = S0 cos[2π(νb − νa)t], (16)

and we can find S0 by calculating the magnitude of the resultant vector, i.e.

S0 =

√(∑
x − components

)2
+
(∑

y − components
)2

=

√√√√( N∑
k=1

Sk cos[2π(νb − νa)t+ φk]

)2

+

(
N∑
k=1

Sk sin[2π(νb − νa)t+ φk]

)2

. (17)

Expanding, we get

S0 =
( N∑
k=1

S2
k cos2[2π(νb − νa)t+ φk] +

N∑
k=1

S2
k sin2[2π(νb − νa)t+ φk]

+
N∑
k=1

N∑
l>k

2SkSl cos[2π(νb − νa)t+ φk] cos[2π(νb − νa)t+ φl]

+
∑
l>k

2SkSl sin[2π(νb − νa)t+ φk] sin[2π(νb − νa)t+ φl]
)1/2

. (18)

Again using the trig identities in Equations 5 and 6 this can be simplified to

S0 =

√√√√ N∑
k=1

S2
k +

N∑
k=1

N∑
l>k

2SkSl cos(φk − φl). (19)

Substituting this back into Equaton 16 we find that the total output signal is given by

ST =


√√√√ N∑

k=1

S2
k +

N∑
k=1

N∑
l>k

2SkSl cos(φk − φl)

 cos(2π(νb − νa)t). (20)

Note that this, again, is the beat signal, but with an amplitude that is modified by the factor

with the radical. Note also that the amplitude in Equation 20 is identical to Equation 7. We

see, therefore, that the power of the beat signal with the VSRT interferometer is identical

to the magnitude of the complex visibility for that baseline for any arrangement of sources.

With a professional radio astronomy antenna array, the magnitudes and phases of the

Visibilities are obtained and so a two-dimensional Fourier transform is applied to yield an

image of the source. With the VSRT interferometer, though, the phases are not measured,

and so one must analyze the shape of the magnitudes as a function of baseline.
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