Physics 100
Laser Module

Homework 4 Solutions

The equilibrium populations are given by the Boltzmann equation

$$
\mathrm{N}_{2} / \mathrm{N}_{1}=\exp \left[-\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right) / \mathrm{kT}\right] \text { and } \mathrm{N}_{3} / \mathrm{N}_{1}=\exp \left[-\left(\mathrm{E}_{3}-\mathrm{E}_{1}\right) / \mathrm{kT}\right] \text {, where } \mathrm{N}_{1}+\mathrm{N}_{2}+\mathrm{N}_{3}=10^{20}
$$

At room temperature $\mathrm{kT}=\left(1.38 \times 10^{-23}\right)(300)=4.14 \times 10^{-21} \mathrm{~J}=0.0259 \mathrm{eV}$
So that
$\mathrm{N}_{2} / \mathrm{N}_{1}=\exp [-0.2 / 0.0259]=4.4 \times 10^{-4}$
And
$\mathrm{N}_{3} / \mathrm{N}_{1}=\exp [-0.6 / 0.0259]=8.7 \times 10^{-11}$
So
$\mathrm{N}_{1}+\mathrm{N}_{2}+\mathrm{N}_{3}=10^{20}$ or $1+\left(\mathrm{N}_{2} / \mathrm{N}_{1}\right)+\left(\mathrm{N}_{3} / \mathrm{N}_{1}\right)=10^{20} / \mathrm{N}_{1}=1+4.4 \times 10^{-4}+8.7 \times 10^{-11}$.
Solution is
$\mathrm{N}_{1}=9.996 \times 10^{19}$
$\mathrm{N}_{2}=4.4 \times 10^{16}$
$\mathrm{N}_{3}=8.5 \times 10^{9}$
b. At $5000 \mathrm{~K} \mathrm{kT}=0.432$, so repeating the calculation, we find that
$\mathrm{N}_{2} / \mathrm{N}_{1}=\exp [-0.2 / 0.432]=0.629$
$\mathrm{N}_{3} / \mathrm{N}_{1}=\exp [-0.6 / 0.432]=0.249$
So
$1+\mathrm{N}_{2} / \mathrm{N}_{1}+\mathrm{N}_{3} / \mathrm{N}_{1}=10^{20} / \mathrm{N}_{1}=1+0.629+0.249=1.879$
Solving:
$\mathrm{N}_{1}=5.32 \times 10^{19}$
$\mathrm{N}_{2}=3.35 \times 10^{19}$
$\mathrm{N}_{3}=1.32 \times 10^{19}$
c. The laser transition is from E_{2} to E_{1}, so $\Delta \mathrm{E}=\mathrm{E}_{2}-\mathrm{E}_{1}=0.2 \mathrm{eV}$ Using $E=h c / \lambda$ we find $\lambda=6.22 \times 10^{-6} \mathrm{~m}$ or 6220 nm or $6.22 \mu \mathrm{~m}$ in the IR

