HW \#2 Solutions

1. From diffraction, the laser beam will spread out with a half-angle spread of

$$
\Delta \theta=1.22 \lambda / \mathrm{D} \text { (where } \mathrm{D} \text { is the aperature size). }
$$

So, $\Delta \theta=1.22\left(500 \times 10^{-9} \mathrm{~m}\right) /(0.01 \mathrm{~m})=6.1 \times 10^{-5}$ radians or 0.0035°.
Then the beam radius at the moon is $\mathrm{r}=\Delta \theta\left(3.82 \times 10^{8} \mathrm{~m}\right)=2.33 \times 10^{4} \mathrm{~m}$, giving a beam area of $\mathrm{A}=\pi \mathrm{r}^{2}=1.71 \times 10^{9} \mathrm{~m}^{2}$. Given the moon's mean radius of $1.74 \times 10^{6} \mathrm{~m}=\mathrm{R}$, the ratio wanted is Beam area/Moon cross-sectional area $=\pi \mathrm{r}^{2} / \pi \mathrm{R}^{2}=0.0002$,
so that 0.02% of the moon's projected area will be covered by the beam.
2. a. Since the energy of a photon is $E=h f$, and since $c=f \lambda$ holds as well, we can substitute $f=$ c / λ to find that

$$
\mathrm{E}=\mathrm{hc} / \lambda
$$

Then substituting $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and $\lambda=632.8 \times 10^{-9} \mathrm{~m}$, we find

$$
\mathrm{E}=3.14 \times 10^{-19} \mathrm{~J} .
$$

Since $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$, we can convert to eV , finding $\mathrm{E}=1.96 \mathrm{eV}$.
b. The power, P , of a laser beam is defined as $\mathrm{P}=$ energy/time. This can also be written as

$$
\mathrm{P}=\mathrm{NE} / \mathrm{t},
$$

where E is the photon energy and N / t is the number of photons per second in the beam. Then

$$
\mathrm{P}=10^{-3} \mathrm{~J} / \mathrm{s}=(\mathrm{N} / \mathrm{t})\left(3.14 \times 10^{-19} \mathrm{~J}\right) \text {, or, }(\mathrm{N} / \mathrm{t})=3.2 \times 10^{15} \text { photons } / \mathrm{sec} .
$$

c. The heat needed to raise the water temperature by $1^{\circ} \mathrm{C}$ is

$$
\Delta \mathrm{Q}=(100 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(1^{\circ} \mathrm{C}\right)=418 \mathrm{~J}
$$

If the laser beam heats the water uniformly and all the energy of each photon goes into heating the water, then

$$
\mathrm{P}(\Delta \mathrm{t})=(\text { photon energy absorbed by water in time } \Delta \mathrm{t})=\Delta \mathrm{Q},
$$

so that $\quad\left(10^{-3} \mathrm{~J} / \mathrm{s}\right)(\Delta \mathrm{t})=418 \mathrm{~J}$, and we find that
$\Delta \mathrm{t}=4.18 \times 10^{5} \mathrm{~s}=116$ hours $=4.83$ days - or really never since the heat will dissipate over these long times.
d. Repeating part c for a 100 W argon laser, gives 10^{5} times more power so heating will occur 10^{5} times faster or $\Delta \mathrm{t}=4.18 \mathrm{~s}$, now a real effect.
e. Threshold damage occurs at $0.5 \mathrm{~mJ} / \mathrm{cm}^{2}=5 \times 10^{-4} \mathrm{~J} / \mathrm{cm}^{2}$.

With a $1 \mathrm{~mW}=10^{-3} \mathrm{~W} \mathrm{He}-\mathrm{Ne}$ beam focused to a $50 \mu \mathrm{~m}$ radius, we can write the energy/area of the beam at threshold as

$$
5 \times 10^{-4} \mathrm{~J} / \mathrm{cm}^{2}=\left(10^{-3} \mathrm{~J} / \mathrm{s}\right)(\Delta \mathrm{t}) /\left[(\pi)\left(50 \times 10^{-4} \mathrm{~cm}\right)^{2}\right]
$$

Solving for $\Delta \mathrm{t}$ we find $\Delta \mathrm{t}=39 \mu \mathrm{~s}\left(39 \times 10^{-6} \mathrm{~s}\right)$

