Homework 1 Solutions

a) What I wanted here was for you to realize that if the path difference equaled an integral number of wavelengths for some particular angle θ then the two waves will arrive exactly in phase and there would be constructive interference on the screen at that location. If, on the other hand, at some angle θ the path difference corresponds to an extra ¹/₂ wavelength – so $\lambda/2$, $3\lambda/2$, $5\lambda/2$, etc. – then the two waves will arrive exactly out of phase and cancel producing a dark spot, or complete destructive interference.

b) From the small triangle, we have $\sin \theta = (\text{path diff})/d$, while from the large triangle, we also have that $\tan \theta = x/D$. At small angles, we have that $\sin \theta \sim \tan \theta \sim \theta$, so that we can write that (path diff)/d = x/D, or solving for x, we have x = (path diff)D/d. Now, to have constructive interference, we must have (path diff) = n λ , where n is an integer. In that case, we have $x = nD\lambda/d$ as the locations of bright spots due to constructive interference. Finally, then the distance between consecutive bright spots will be equal to $\Delta x = D\lambda/d$.

c) Substituing D = 3 m, λ = 632.8 x 10^{-9} m, and d = 0.0005 m, we have Δx = 3.8 mm

While for the argon ion laser at $\lambda = 514.5$ nm, we have $\Delta x = 3.1$ mm.