Homework 1 Solutions

a) What I wanted here was for you to realize that if the path difference equaled an integral number of wavelengths for some particular angle θ then the two waves will arrive exactly in phase and there would be constructive interference on the screen at that location. If, on the other hand, at some angle θ the path difference corresponds to an extra $1 / 2$ wavelength - so $\lambda / 2,3 \lambda / 2$, $5 \lambda / 2$, etc. - then the two waves will arrive exactly out of phase and cancel producing a dark spot, or complete destructive interference.
b) From the small triangle, we have $\sin \theta=$ (path diff)/d, while from the large triangle, we also have that $\tan \theta=x / D$. At small angles, we have that $\sin \theta \sim \tan \theta \sim \theta$, so that we can write that (path diff)/d = x/D, or solving for x, we have $x=($ path diff)D/d. Now, to have constructive interference, we must have (path diff) $=n \lambda$, where n is an integer. In that case, we have

$$
x=n D \lambda / d \quad \text { as the locations of bright spots due to constructive interference. }
$$

Finally, then the distance between consecutive bright spots will be equal to

$$
\Delta \mathrm{x}=\mathrm{D} \lambda / \mathrm{d}
$$

c) Substituing $D=3 \mathrm{~m}, \lambda=632.8 \times 10^{-9} \mathrm{~m}$, and $\mathrm{d}=0.0005 \mathrm{~m}$, we have

$$
\Delta \mathrm{x}=3.8 \mathrm{~mm}
$$

While for the argon ion laser at $\lambda=514.5 \mathrm{~nm}$, we have $\Delta x=3.1 \mathrm{~mm}$.

