Union College

 Winter 2015
Physics 120
Lab 2: Modeling Real Motions
16. Cart on a Track
As a physics research tool, computer programs are very helpful for simulating nature. This provides a simple way of seeing what effect some parameter might have on physical phenomena. In order to have confidence that the program correctly simulates nature, though, we first need to develop a program and test that it does simulate nature properly. We will start by modeling the motion of a fan cart on a track. This is a one-dimensional motion, which makes a simple good place to start, and the fan can apply a constant force, which is also easy to model in the program. Additionally, we can test the program by comparing it to an actual experiment in class.

We will make this program by starting with the one you have already made. Once you’ve created a working program, it is almost always easier to make new programs by starting with a working one. This way you don’t have to remember and retype all the necessary lines at the start (such as the “from visual import *” line).

We will make some major changes to the program, but to ensure that we don’t lose the work that we’ve accomplished, before we start editing do the following Do a “Save As” and save with the name “cart_on_track.py” Delete all lines between “from visual import *” and the while loop (keeping the “step=0” line and the comment lines before it.
First, we create the track. We’ll make the length of the track be a variable, and we’ll set to be one meter long. And, to make a visual of the track, we make a box object. As the first lines of code (i.e after “from visual import *”), type the following.

length=1.0
track = box(pos=vector(0,-0.05, 0), size=(length, 0.05, .10))

The pos attribute of a box object is the position of the center of the box. We place it at a slightly negative y value so that the cart (which we’ll add next) can move on top of the track, at y=0. The size attribute gives the box’s length in the x, y and z directions. Note that we put “length” as the x-length because the cart will run along the x-axis, and so we can change the length of the cart easily by changing the value of length. The real advantage of setting length as a variable is that we can more easily (and less likely make a mistake) constrain the motion of the fan cart...If we change the value of length, it will change both the length of the track and how we constrain the motion – we won’t need to remember to make both changes ourselves.
To represent the fan cart, we will add another box object. We first make sure that the cart starts almost at the left end of the track. We will give the cart a length of 0.1 meters, allowing 0.01 m from the end of the track to the edge of the cart, we want the cart’s center to be 0.06 meters from the end. So, make the next two line as follows

start = -0.5*length+0.06
cart=box(pos=vector(start,0,0),size=(0.1,0.05,0.1),color=color.green)

Run the program to see the track and “cart”.

To make the cart move we will use the while loop. We now want our program to model real physics, and so the while loop should now include lines that tell the program:

How to calculate the net force (if any) on the objects

How to calculate the new momentum of each object, using the net force and the momentum principle

How to find the new positions of the objects, using the momenta

Before the while loop, we need to set the initial conditions. Any object that moves needs two vector quantities declared before the loop begins:

1.) initial position; and

2.) initial momentum.

We’ve already given the cart an initial position of < 0.45,0,0 > m. Now we need to give it an initial momentum, which involves both a mass and an initial velocity:

cart.m = 0.80

We have just made a new attribute named “m” for the object named “cart”. The symbol cart.m now stands for the value 0.80 (a scalar), which represents the mass of the cart in kilograms.

Let’s give the cart an initial velocity of < 0.5, 0, 0 > m/s (which might occur from a gentle push with your hand):

cart.vel = vector(0.5, 0, 0)

Then, the initial momentum would be the mass times this initial velocity vector:

cart.p = cart.m*cart.vel

This now gives the cart an initial momentum value that is 0.80 kg < 0.5, 0, 0 > m/s = < 0.4, 0, 0 > kg m /s. The symbol cart.p will stand for the momentum (a vector) of the cart throughout the program. Note: We could have called the momentum just p, or the mass just m, instead of cart.p or cart.m. But, by defining these quantities as attributes of the cart, we will (in the future) more easily be able to tell apart the masses and momenta of different objects.
This completes the first part of the program. The program now creates numerical values for constants we might need, create 3D objects, and gives them initial positions and momenta. Change all remaining references of “mercury” to “cart”.
Constant momentum motion: Let’s start with simple motion, with no force.
We now want to put the physics into our code. So far, in class, we have established the position update equation:

[image: image1.wmf]t

v

r

r

i

f

D

+

=

v

v

v

,
where
[image: image2.wmf]m

p

v

/

v

v

»

 and so we can write

[image: image3.wmf]t

m

p

r

r

i

f

D

+

=

)

/

(

v

v

v

We will use this equation to increment the position of the cart in the program. First, we must translate it so VPython can understand it. To modify the position update equation, then, we must change the “deltar” to “(cart.p/cart.m)*deltat.” The cart’s position update equation (inside the while loop) should noq look like as follows.
cart.pos = cart.pos + (cart.p/cart.m)*deltat

Notice how this statement corresponds to the algebraic equation:

[image: image4.wmf]t

m

p

r

r

i

f

D

+

=

)

/

(

v

v

v

Run the program. You should now see that the small green box, which represents the cart, moves to the right at a constant speed along the top of the track. And then it keeps going and going... even after it leaves the track. This clearly is not a physical reality! What went wrong? We never put anything in the code that tells the computer that this is not possible, and so it doesn’t know any better. We need, then, to put in a physical constraint.

CHECKPOINT 4: Wait for your instructor to check your program -- read ahead while you wait.

17. Adding a physical constraint to the motion: (Controlling Loops by Limiting Parameters)
The easiest way to do this is with the constraint in the “while” statement. Instead of using a random time limit, we can limit the position of the cart. In short, we want to stop the while loop when the cart reaches the end of the track. We first define the end of the track. Add the following line anywhere before the while loop:

rightend = 0.5*length-0.05

Note that we set the end to be 0.05 m before the actual end. This is because of the finite size of the cart. The center of the cart will be 0.05 meter from the end, when the front edge of the cart is at the end of the track.
And, now, we can change the while statement to tell the program to do the following calculations only as long as the cart has not reached the end of the track. This is a constraint, specifically, on only the x-position of the cart. This constraint can be written as “cart.x<rightend.” So, the while statement should now be:
while cart.x<rightend:

Run the program again. This time you should see the small green box travel to the right at a constant velocity, and stop just at the end of the track.

19. Adding Force and the Momentum Principle

Let’s now modify the program to include a force on the cart. This means we will have to add lines to the program that tell the computer that there is a force on the cart, and tell it how to use the momentum principle to change the cart’s momentum due to the force. Suppose you push a cart, and after leaving your hand it has an initial momentum to the right, as before. But now, the fan on the cart is opposing this initial momentum, so that there is a net force on the cart to the left. This force is about 0.3 N.

Let’s use our program to model this situation. First let’s add a line to that creates a force vector. In the loop, insert the following line right after the “rate” statement:

Fnet = vector(-0.3, 0, 0)

Note: This force has a constant (vector) value; it doesn’t change each time through the loop, unlike the cart’s position. We could have, therefore, written this line before the loop. But in most of the programs we write, force will not be constant and so may change with time. In these cases, force calculations should go inside the loop, and so we might as well get in that practice now.
Next, we need to use the momentum update equation, which we know is

[image: image5.wmf]t

F

p

p

i

f

D

+

=

net

v

v

v

To put this into the program, insert the following line in the loop, right after the Fnet line.
cart.p = cart.p + Fnet*deltat

Note the similarity between this line and the position update line. Here is how the algebraic equation corresponds to the VPython code.

 EMBED Microsoft Equation 3.0
[image: image6.wmf]t

F

p

p

i

f

D

+

=

net

v

v

v

Run the program. You should see the cart move to the right a small distance before changing direction and then moving to the left, and speeding up. You will also see, now, that the cart will keep going and going to the left. You can stop it by closing the graphics window. Again, we have not written anything in the code telling the program not to let the cart leave the left end of the track. We need to add this constraint as well and we can do this by adding to the “while” statement constraint. Let’s first tell the program where the leftend of the track is with the following statement, the same way we told it about the right end.
leftend = -0.5*length+0.05
Change the “while” statement so that it says the following:

while cart.x<rightend and cart.x>leftend:

Change the initial momentum of the cart so that it moves a greater distance to the right before changing direction: make the initial speed of the cart 0.8 m/s to the right. How do you expect this will change the motion of the cart? Run the program. Is the change in the motion of the cart as you expected? Does the change make sense?
20. Analyzing the Motion
Getting the computer to reproduce a video of the motion is cool, but the video alone doesn’t provide a test of physics. We need tools to analyze the motion demonstrated in the video. Here are two popular methods.

Printing out the calculations.

The motion of a fan cart is a relatively simple motion and we could calculate almost any aspect of the motion by hand. We’ll do that and compare to the calculation made by Vpython to demonstrate that with more complex motion, which cannot be solved by hand so easily, we can rely on computer simulations.

Calculate by hand, first, what the final momentum of the cart and time passed should be when the cart returns to the starting position. Remember that the force is constant.

t = ______________________________
[image: image7.wmf]f

p

v

= < ____________________ , 0 , 0 >

Now, let’s see what the computer calculates.
· After the “while” loop, start a new line, hit delete to unindent, and add the following line:

print “Delta t =”, t, “Final momentum =”, cart.p

Note that this print statement has four elements: two quotations and two values.

· Run the program. Read the the printout value in the Python Shell window.
· According to the program, what are the values of the t and
[image: image8.wmf]f

p

v

?

t = ______________________________
[image: image9.wmf]f

p

v

= < ____________________ , 0 , 0 >

· Compare the printout value with your calculated values. Do they agree?

Note how easy the computer simulation was. Now, imagine changing some parameters and redoing the calculations. With the computer, this is easy. Change the initial velocity to be 0.6 m/s to the right, the mass of the cart to 0.7 kg, and the Net Force to 0.5 N to the left. What should be the final momentum now? Don’t bother to do the calculation by hand, but make these changes in the code and then run the program again. According to the program, what are the values of the t and
[image: image10.wmf]f

p

v

?

t = ______________________________
[image: image11.wmf]f

p

v

= < ____________________ , 0 , 0 >

21. Graphing the Motion
Another, and even more useful tool with computer simulations, is to graph the results.

To enable your VPython code to do any graphing, at the top of the program, immediately after the line that says “from visual import * ” add the following line.

from visual.graph import *

And anywhere before the “while” loop, add the following two lines:

xcurve = gcurve(color=color.cyan)

pcurve = gcurve(color=color.red)

These define “xcurve” and “pcurve” as continuous lines on a plot, of colors cyan and red, respectively. We will, in the “while” loop, then, assign the cart’s x positions and x-momenta to these curves. To label the axes, add the following line BEFORE the xcurve line.
gdisplay(x=100,y=500, xtitle='time (sec)', ytitle='X (cyan), Px (red)')

The “x=100” and “y=500” define where the graph window will show up on your screen. We put these in here to make the graph window appear at a different location than the video, and so not cover the video.
Now, before letting the program make the plots, make a prediction. What do you think the graph of the cart’s x values vs. time will look like? What do you think it’s x-component of momentum vs. time will look like?
Draw your predictions for both curves in the space below.

Now, let’s see what the VPython program says. Inside the “while” loop, after the cart’s position has been recalculated and before the time gets modified for the next loop, insert the following two lines (make sure they are indented, like all calculations in the “while”):

xcurve.plot(pos=(t,cart.x))

pcurve.plot(pos=(t,cart.p.x))

The first line will add a point at coordinates (t, cart.x) to the cyan curve, and the second line will add to the red curve. When you run the program, as it goes through the “while” loop, it will add the x and p.x values to the plots as they are calculated. Run the program. Examine the plot window. How do these curves look? Were your predictions right? If not, discuss the results with your partner(s) and explain (below) why the real curves look different from what you expected.
Make sure you have put in enough comment lines to your program and save it as yourname_fancart.py,
Lab 2, Part B: Experimental Confirmation
A computer simulation is useful only if it properly models nature. Now that you have developed a code to model the motion of a fan cart on a track, you should devise an experiment to do in class to test the accuracy of your code. You must make your test quantitative—that is, you want to confirm that some numerical results in your experiment and computer code agree. You may use any of the equipment that your instructor has brought into the class. Look at the equipment available, conference with your partner(s), and plan an experiment. Be sure to devise ways to make sure that all the physical parameters in the code and in the experiment are the same. You will do the experiment in the second day of this lab, but must have a plan ready. So this is your homework assignment for today:
Homework: Devise an experiment using the equipment in the class to quantitatively test your fan-cart on a track VPython program. Your experiment and program must use the same mass, cart length, force and initial velocity. (Hint: consider which set is easier to adjust to match the other.) Submit your plan to your instructor at least one hour BEFORE the next class time (only one submission per group is needed). When you come to class, your instructor may have comments about your plan, or you may be told to get started.
In the following space: explain what quantity you are testing:

When you have all the parameters set correctly in the code, run the program. What does the program predict for this quantity?

Run the experiment. What is the experimental result? (If you have time, run the experiment several times and take the average?)

How well do your experimental results agree with your simulation? Do they disagree by more than the standard deviation of the experimental results (if you were able to do at least 3 trials)?

Lab Report: Submit your program (by email or Nexus), an abstract, and answers to the following questions.
1. Explain how VPython enables you to simulate the motion of a body acting under the influence of a force—how do the update formulae get used? What structure of the code causes the position of the cart to change, and, hence, move, many times?

2. Briefly discuss the need for considering physical constraints when running the code. Use the example of the cart running off the end of the track, without falling, to explain how the programmer needs to account for ALL relevant physical constraints to make sure the simulation is realistic.

3. Discuss your predicted graph of momentum vs. time and what VPython showed and discuss how the computer code can be used to test physics models by comparing with predictions?

Initial

position

Final

position

Velocity

Timestep

cart.pos = cart.pos + (cart.p/cart.m)*deltat

Initial

momentum

Final

momentum

Net force

Timestep

cart.p = cart.p + Fnet*deltat

