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Physics 121 Lab #2:

Numerical Calculations of the Electric Field from a Uniformly Charged Rod
Consider the derivations done in class and in the book regarding the determination of the expression of the electric field from a uniformly charged rod.  Note that two separate derivations were needed just to determine E at two different positions, and that these positions were special positions – locating along special axes.  Why did we not bother to derive E at any random position?  The answer is that doing so would be very difficult, because of the sum of many vectors and the lack of symmetry in a general solution.  ‘Analytical’ (i.e. using pen and paper) derivations of real situations in nature, sometimes, are not feasible.  Our goal of modeling nature by this approach, then, is constrained.  In this lab, we demonstrate how ‘numerical’ modeling (i.e. using computers) is used for these situations, thereby enabling physicists to examine nature with increasingly complexity.

Instructions

To start you can either open a previous VPython program you have from Phy120 and deleting the non-essential lines and modifying the others to match the calculation here, or you can start from scratch by following the instructions below.

1.  Open IDLE for Python, and type the usual beginning line:

from visual import *

A.  Electric Field of a Point Charge.

Our goal, in the end, is to calculate the electric field of a uniformly charged rod.  We’ll start simple, and build up, checking that our code works as we go.  So, we’ll first calculate the electric field from a point charge.

2.  It is convenient, and common practice, to set up all the constants and parameters that will be needed.  Since we’ll be calculating electric fields, two constants we’ll use are in the following two lines.

k = 9.0e9 #constant in Coulomb’s law

e = 1.602e-19 #mag. of charge of proton or electron
It is also good practice to write lots of comments in your programming.  If someone else needs to modify your program, or you return to your program years later, it will be much easier if everything is well explained with comments.

3.   Now, let’s create a visual image of the charge.  On the next line, type the following.

charge = sphere(pos=vector(0, 0, 0), radius=1e-11, color=color.red)

This line, as you hopefully recall from Phy120, creates a ‘sphere’ object, where ‘pos,’ ‘radius,’ and ‘color,’ are its attributes.  (You may recall that we can create additional attributes by using the object name and a suffix.  For example, we could assign a mass to ‘charge’ with a line saying something like charge.m=9.11e-31.)

We will need an actual value for charge to use in our calculation.  Let’s do that by making it an attribute of charge.
charge.q = -e # make the charge an electron.
4.  To calculate the electric field vector at some position r, relative to the location of the charge, we need to set up the relative position vector and its unit vector.  In general, one would want to be able to pick or change the observation position, easily.  So, rather than burying the coordinates of the observation position in the equations, we assign a vector variable at the top of the program.  So, add the next line somewhere near the top, so that we can find it easily when we want to change it.

robs = vector(1e-8,0,0)  # position to calculate Efield

5.  Now we are ready to set up the calculation.  On a separate piece of paper, write the steps that we have practiced for calculating the Coulomb E field, and consider how to use the parameters above to write this equation in code.  Then, enter the comment line below and follow it with the lines of code to calculate the Efield at robs (you will probably want to use about three lines).   Recall that in VPython we can write the square of the magnitude of a vector as r.mag**2 (this saves at least one line of code).  Now run the program to make sure that there is no formatting error.  There will be no output yet, other than the appearance of a red sphere.  Call an instructor over to look at these lines of code before continuing to the next step.

#Calculate E field at robs

[Answer for instructor (to be deleted before passing out):

r = robs – charge.pos

rhat = r/r.mag

E = (k*charge.q/(r.mag**2))*rhat]
6.  Add the following line, run the program, read the output in the Shell window and check with your own calculation using the Coulomb E field equation to ensure that the VPython calculation is correct.

print “E at”, robs, “ = ”, E

If the value is as you expect (as a vector), then you’ve got a good start. 

7.  To test the vector calculation, change robs so that it has both x and y components, recalculate the Coulomb E field by hand, and run the program again and check that it still agrees with your calculation for this new position.

robs = vector(1e-8,1e-8,0)
When done, change your robs back to its original value.

8.  Let’s now add a visual for the E-field.  In particular, we create an ‘arrow’ object to represent the E field.  We do that with the following line.

Evector=arrow(pos=robs, axis=1e-17*E, shaftwidth=1e-10, color=color.white)

We need such a small values for ‘axis’ and ‘shaftwidth’ because, at the moment, we’re working on a very small scale in this problem.  If we simply let axis=E, the arrow would be so long the scale of the window would much too small to see the spheres representing the charges.

Run the program and makes sure the arrow command works.

Note also that we set the pos of Evector to equal robs.  So, whenever we change robs, the arrow will move with it.  Change robs and run the program to make sure that this arrow works.

B.  Electric Field from a dipole along its axis.

9.  Let’s first set the dipole parameters.  We already have one q, and so we’ll create an opposite charge.  But, we first need to set the separation distance.  So, add the following line somewhere near the top of your program

s = 1.0e-10 #separation distance of charges in dipole

10.  Then, so that the origin will be at the center of the dipole, move the charge that you’ve already created by editing its ‘pos’ to be (-s/2,0,0).  Then add the opposite charge.

charge2=sphere(pos=(+s/2,0,0),radius=1e-11,color=color.green)
charge2.q = +e.
11.  Now, we need to modify the calculation of E.  In this case, we have two charges and in VPython it is quite simple to add vectors, so we’ll just use the Coulomb field equation for both charges and add the E vectors.  Change the lines after the comment “#Calculate E field at robs” to include a calculation of r1, r1hat, and E1, from the first charge as well as r2, r2hat, and E2 from the second charge.  Then, calculate the total E with a line that adds E1 to E2.  Check with an instructor that you’ve got these lines correct.

12.  Use the textbook equation for the E field on the axis of a dipole to calculate what you expect the E field to be at robs.  (Note that the s value is 100 times smaller than the distance to robs and so the dipole approximation formula should work.)  Then, run the program and see if your VPython code gets the same answer.  If it doesn’t, then, you either made a mistake in your calculation, or in your typing in the code.  So, check your calculation again and/or check your program, until you get identical answers.
If the program appears to be working, save it with the name “Phy121_lab2B_yourname.py”.

C.  Electric Field from a dipole along a perpendicular axis.

And now for a small demonstration of the power of using computer programs to make calculations, we see how easy it is to change our observation position for the calculation.  To calculate E at another location, we don’t need to redo everything, we simply change the parameters for ‘robs.’  The lines you have input after the “#Calculate E field at robs” are all generally correct for any two charges and any robs.  The locations and magnitudes of these charges and robs are all defined above.  So, let’s now see what E we get when we move robs to the perpendicular axis.

13.  Change robs to be along the y-axis.  

14.  Use the textbook equation for E field of a dipole on a perpendicular axis to calculate what E should be.  Then run the program and compare your answers.  Do they agree?  If so, continue.
D.  Electric Field from a dipole at any location

Recall that in class we said that to derive the general expression for the E field from a dipole at any position was too onerous.  In VPython, though, it is easy.  

15.  Change robs to any position you like and run the program.  Record the position and the resultant E field, and remember this step when addressing question 2 in the “Questions for your report” at the end.

Do a “Save As” and give the program the name “Phy121_lab3D_yourname.py”.

E.  Electric Field along an axis perpendicular to a rod.

And, now, we expand the program to calculate the E field due to a distribution of charge.  Here we consider a rod of length L and total charge Q.  Additionally, this will be a macroscopic body and so we’ll also need to change all the parameters to reasonable macroscopic values.

Let’s arrange the rod along the x-axis and so to calculate E at a point on a perpendicular axis we want robs to be on the y-axis.  So, make the following changes at the top of your program. 

16.  Change the coordinates of robs to a point on the y-axis at a distance of 2 units from the rod.

17.  Add two lines to define the parameters of the rod.  Set 

L = 10.0 # length of rod 

Q = 1.0e-9 # charge of rod set to 1 nC.

18. Comment out (by adding a hashtag (#) at the start of the line) all the lines that define the dipole.  

Recall, now, the discussion in class about calculating the total E field by summing over lots of small pieces of the rod.  We will build the rod by adding little point charges in a row, calculating the E field from each charge using the Coulomb field equation, and adding the field from each new charge to the total of all the previous fields.  Since this is a place where the coding is a little trickier, and therefore is an area in which programming errors are more likely, we’ll make use of some techniques that can make programming errors more obvious.  For starters, instead of making a rod object straight out, we want to see that we have succeeded in building the rod piece-by-piece.  So, do NOT delete (or comment out) the lines that make the visual of the dipole; we will simply modify it to make a visual of the rod.

19.  Thinking about building the rod in pieces, we first need to define the number of pieces.  Just to start, let’s set this to be10 pieces.  Let’s also have the code print this number out, because it will be useful when analyzing the results to know what N was used.

N=10 #number of pieces

print “number of pieces =”, N
20  Just below this, we’ll put in lines to calculate the parameters of each little piece, depending on the value of N. (You must put in correct expressions to the right of the equal signs.)

dL=

#  length of each piece
dQ=

# charge of piece of rod of length dL

Ask an instructor to check these lines before continuing.

Now, we need to have the code calculate dE from each piece (at robs) and the sum all the dE’s, as vectors, to get the total E.  We do this using a ‘while’ loop.  The basic strategy is to start at one end of the rod, calculate r, rhat, and dE from that point, then step to the next piece, do the same calculations, and we’ll keep running total of E by adding each new dE to the total as we go.  We start with the running total set to zero.  

21.  So, add the following line.

E = vector(0,0,0)  #set E to zero before starting sum

We also determine our first piece.  

22.  Add the following line next.

dQpos = vector(-L/2+dL/2,0,0)    #position of first piece
(The “+dL/2” is included to make the position of dQ be located in the center of the piece of length dL.) 

Then, we start the while loop.  The ‘while’ loop statement must also contain a constraint that tells the code when to stop the loop and advance to the code after the loop.  Since we want to quit summing when we reach the end of the rod, we can set the constraint to be on the x-value of the piece of rod.  

23.  Type the following line next.  (The colon is important.  After the colon, hit enter and you should get an indented line.)

while dQpos.x<L/2: #exits loop when new charge is beyond right end of rod
Now, we do the Electric field calculation of the little piece, in the same way that we did with the point charge in part A.

24.  On indented lines after the ‘while’ statement, type in three lines very similar to those that produced the calculation of E of point charge in part A, except that:

a. the charge’s position is given by dQpos (instead of charge.q), 

b. the value of the charge is dQ (instead of charge.q), and

c. replace ‘E’ with ‘dE’.

25.  Now we add to the running total, with the following line.  Make sure that it is indented, like the previous lines.

E = E + dE

(Hopefully you remember seeing a line like this from VPython programming in Phy120.  As a mathematical equation this line would make no sense.  But, in programming, it means to do the arithmetic on the right, and THEN assign that value to the parameter on the left.)  

26.  Let’s now draw the piece we used by making a ‘box’ object corresponding the piece of the rod at this position.  Insert the following (indented) line.

box(pos=dQpos, size=(dL,L/20,L/20), color=color.red)

27.  And, to end the loop, we move to the next piece, with the following (indented) line.

dQpos.x = dQpos.x+dL

You should still have the last two (unindented) lines from before in which the total E field is printed out in component form and an arrow is drawn to represent the E field vector.

28.  Run your program to see if it works. 

Use the textbook equation for this situation to calculate what E in this situation should be.  Vary N starting with N=3, and picking 5 values up to N=50, and note the difference in each between the textbook value and the VPython value.

Save the program with the name “Phy121_lab3E_yourname.py”.

F.  Electric Field on the rod’s axis at a distance beyond the end of the rod.
29.  Change the components of robs to calculate the E field at a position beyond the end of the rod.  Calculate with a calculator the value using the equation derived in class and compare to the VPython value.

G.  Electric Field of the rod at a random location in space
30.  Modify the program to find the field at some other observation point that is neither on the rod’s axis nor on the perpendicular axis.  Save the program as “Phy121_lab3G_yourname.py”.

31.  Set robs to any point very far from the rod, such that |robs| >> L, run the program and compare the printout value of E with that expected using the Coulomb law for a total charge Q.

For your report:
Submit (by e-mail or to Nexus page) a title page with an abstract, the two programs in boldface (above), and answers to the following questions, either answered item by item, or in a short essay.
Questions for your report

1.  Explain how the vector equation for the Coulomb E field due to a point charge is performed in the program.

2.  Discuss the difference between trying to calculate the vector E field of a dipole at a random observation position using pen and paper vs. with a computer program.  

a.  Can the vector value of E be calculated for any specific situation by either method?  

If you were to calculate E for a specific position with pen and paper and calculator, how useful would that be for calculating E at another position?  

Would a VPython code, written to calculate E at some specific position, be more useful?

b.  Can a general expression for E of a dipole at a random position be easily derived?

c.  Does the VPython code yield a general equation that can be written and used for analytical derivations?  Explain why analytical solutions (general equations, with variables) are still valuable, when they are possible.

d.  How and why is a program useful in the general sense if it doesn’t yield a general equation? 

3.  Comment about adding vectors in VPython.  Consider what was involved in adding the two vector E fields from the two point charges in the dipole, even when at a random position.  What additional steps, if any, were needed to ensure that the E fields were added as vectors?

4.  Comment on the comparison of the electric field values obtained with numerical simulations vs. that with the derived analytical equations.  What factors cause inaccuracy in each case, and how does one avoid these inaccuracies?  Are you able to get the two results to agree completely?

5.  Does the visual aspect of the electric field vectors in the VPython program enhance the user’s understanding?  Comment on this aspect of VPython in adding to scientists’ comprehension of physics.
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