

Union College

 Winter 2015
Physics 120 Lab 4: Oscillations of a Mass on a Spring

In each group of 3 students, one student performs the theoretical model using VPython and the other 2 student obtain the measurements experimentally. These can be performed simultaneously. When both groups are done, go to the “Comparing Experiment and Theory” instructions.
I. Theoretical modeling with VPython

A. Modeling a Position-Dependent Force; the Spring Force
First, start with your VPython from lab 2 (should be called yourname_fancart.py) and then do a “Save As” and give your program a name of yourname_SpringOscillations.py

We will now modify our force to be the spring force, which is non-constant. The spring force is given in your book as

[image: image1.wmf]L

s

k

F

s

ˆ

spring

-

=

v

,

where ks is the “spring constant” (force per unit distance),
[image: image2.wmf]0

|

|

L

L

s

-

=

r

is the amount that the spring is stretched from its natural length, and
[image: image3.wmf]L

ˆ

is the unit vector in the direction along the spring from the fixed end to the end with the mass.

In our program, then, we must change the force from that due to the fan to that of a spring. (Imagine we physically remove the fan and attach a spring.)

We first need to define the spring constant in the first part of the program. Somewhere near the top of the program, perhaps right after defining the cart, but necessarily before the “while” loop, add the following.

ks=10 #spring constant
Note that we have added a comment to remind ourselves later what this parameter is.

Then, in the “while” loop, we must change the expression for the force. We know that a mass on a spring will undergo oscillation and so we expect the cart to move between the left and right ends of the track. Therefore, we pick the center of the track to be the position of the mass when the spring is at its natural length. Conveniently, the center of the track is the origin. What, then, is the expression for the stretch of the spring in terms of the x-position of the cart? Ask your instructor when you have an answer.
Change the equation for Fnet to match the force.
Note, now, why we chose to put the line defining the force inside the “while” loop. As the cart’s position changes, the force changes, and so we need the code to recalculate the force every cycle of the “while” loop.
Change the cart’s initial velocity to be zero, so that the cart starts at rest but with the spring compressed. And, set the cart’s mass to 0.75 kg.

Run the program.

You should see the cart go to the end of the track, and stop. This is not the motion we expect for a cart on a spring. We know that it should undergo periodic motion (i.e. oscillation). To find why this is, read through the code and try to think like the computer. What command in the code tells the program to stop the motion?
This is the same as asking, what causes the program to exit the “while” loop. And the only statement that tells the code when to exit the loop is the condition clause in the “while” statement itself. We conclude, then, that the cart has stopped at the end because of the condition “while cart.x<end.” The cart has reached the end, and so that statement is no longer true-->ergo it exits the loop. Now, does this make sense? The mass on the spring will oscillate and so it will go as far to the right of the ‘natural length’ of the spring as it starts to the left. So, to prevent the cart from reaching the end of the track we simply need to start the cart a bit away from the left end of the track. So, find the line where you initially define the cart, and change its position to be (start+0.01,0,0).

Run the program.

Now you should see a nice oscillation.

The video, however, doesn’t show a spring. We have put in the effect of the spring only through the equation for its force. Note that the equations in the code are what tell the cart how to move. In the program, the cart is not really interacting with a spring, as it does in real life. This is another difference between the code and reality. The equations provide us a mathematical way to model the force and subsequent motion, but in reality a physical object is responsible for the interaction.

At the beginning of the program, just after defining the spring constant, add the following lines.

sprL=(start-0.05)-0.1 #sets position of left end of spring

spring=helix(pos=(sprL,0,0),axis=((cart.x-0.05)-sprL,0,0),radius=0.02,color=color.yellow)

With a helix object, “pos” defines the position of one end, not the center, as with the box object. The ‘axis’ (as with the arrow object) is the vector from one end to the other. So, since we want the other end to connect to the left edge of the cart, we set the axis to be the relative position of the left edge of the cart, which is located at <cart.x-0.05,0,0> relative to the left end of the spring, i.e <sprL,0,0>. This spring is not really attached to the cart, but we make it seem attached by setting its axis so that the position of its end is equal the position of the left edge of the cart.
Run the program.

You should see the oscillating cart and the spring, but the spring is not stretching and compressing as the cart moves. This is much like what happened in lab 1 with your arrow from the Earth to Mercury. So, you need to make the same kind of fix. In the “while” loop add a line which ensures that the code re-calculates the spring axis every time the cart’s position changes. Write your suggestion for fixing this problem below and check with your instructor.
Run the program.

B. Hanging the Mass on a Vertical Spring

We can now modify the program to turn the spring vertically, have the mass hanging, and include the force of gravity.
We will no longer need the track, so delete, or comment out, the three lines that define
track, end, and length.
Change the line for start to:

start=0.2
Change the expression for the sprL to:

sprL=start+0.2
(This is needed to ensure that the top end of the spring is higher than the mass).

Let’s turn the cart into a block, which only requires that we change its size to

size=(0.1,0.1,0.1).
But to avoid possible editing mistakes, we can still call it “cart.”
Now, to turn the whole system vertical, do the following steps:

a. Change the cart’s position to be along the y-axis, i.e.
pos=(0,start,0).

b. Change the spring’s position and axis to:

pos=(0,sprL,0)
axis=(0,(cart.y-0.05)-sprL,0).
NOTE that not only have the expressions moved to the y-component, but also that cart.x changed to cart.y.
c. In the expression for the spring force (in the while loop)

cart.x needs to be changed to cart.y.

and the direction of the force needs to be changed to:

vector(0,1,0).
d. The following additional changes from ‘x’ to ‘y’ are needed in the while loop:

spring.axis=(0,(cart.y-0.05)-sprL,0)

xcurve.plot(pos=(t,cart.y))

pcurve.plot(pos=(t,cart.p.y))
Since we no longer have two ends of the track to worry about, change the condition in the while statement to

while t<20:

Run the program and make sure that there are no typos yet. You should see the spring oscillating, just as it did before, but now the whole arrangement, with oscillation, is vertical, and with no track.

If and when the program is running without problems, you can then add the force of gravity. Currently, your spring force is listed as “Fnet”. But, since you’re going to add another force, change this label to Fspr (so that this line becomes

Fspr=-ks*cart.y*vector(0,1,0)).

Now what changes should you make to add gravity? You need add two lines.

Run the program and make sure it still works.
C. Determining the period of oscillation.
We now want to determine the time period for one full cycle. Let’s first calculate an expected value. Using the equation for period of oscillation on a massless spring given in the text, we have

[image: image4.wmf]S

k

m

P

p

2

=

.

where m is the mass of the object attached to the spring and kS is the spring constant. For the mass and spring constant used in the program (near the top), calculate the period according to this equation. Write your answer here.
Now, to do this with the program, we need to add lines to the code to determine when a full cycle has occurred and to calculate how much time has passed. Let’s first discuss how to determine when a full cycle has been completed. The easiest method is to note when the mass changes direction of motion, say from the positive y-direction to the negative y-direction. (Note: we don’t want to count the times it crosses zero, because it does that 2x per cycle.)
Before the while loop add the following three lines,
Npd = 0 #counting index for number of periods

tend = 0 # will calculate time duration for Npd number of pds

direction = -1 #to help note when a change of direction has occurred
Inside the while loop, now, we want to check the direction of motion and change the parameter “direction” at the right time. And, when the y-momentum changes from positive to negative, we count another period. Lastly, we also want to mark the time when this occurs. Inside the while loop, near the end, add the following lines

 if direction<0 and cart.p.y>0: #change of direction at bottom

 direction=1 #resets “direction” to indicate cart is moving up

 if direction>0 and cart.p.y<0: #change of direction at top

 Npd=Npd+1 #count number of when direction changes at top

 tend=t #Note no. of seconds when last cycle ends.

 direction=-1 #indicates cart is now moving down
Note that we have introduced a new type of command -- the ‘if’ statement. When the condition after the ‘if’ is true, then the lines following the ‘if’ statement that are indented (relative to the “if” statement) are processed. Since these ‘if’ statements are inside the ‘while’ loop, they must be indented, and the statements connected to the ‘if’ statement are indented even further. Note also, that our condition in the ‘if’ statemensts contain an ‘and’ – this means that both conditions must be true for the following lines to be processed.
Finally, after the ‘while’ loop, we can calculate the period of oscillation and print out the answer. So, after the while loop (i.e. unindented) add the following.

print "number of periods = ",Npd, "over a duration of", tend, "seconds"

Period=tend/Npd

print "Period of one cycle = ", Period, "seconds"

Run the program.

Do the calculations and print statements work? Are the answers reasonable? Does the program calculate the same period that you found using the equation for the period of spring oscillation?
We can also make the video of the mass on the spring move at a realistic rate and time it with a stop watch. Since we have set deltat = 0.01, the motion will match real time if we have the program do 100 time steps per second, and since we have one time step per loop, inside the ‘while’ loop we add (or modify) the following line.

Rate(100)

Run the program, but this time try to time the oscillations. Do they appear to agree with the calculation printed out by the program?

II. Experimental Measurements
Using the equipment in the room, you want to accomplish the following.
1. Determine the spring constant of a brass spring.

ks =

2. Obtain experimental values for the oscillation period with five different masses. For higher quality data, use either the motion sensor or force sensor. If the latter, be sure that you understand why the magnitude of the force at the top of the spring also oscillates. Should the force oscillation have the same period as that of the motion of the mass?
Open DataStudio (the icon labeled “English” on the bottom bar), click on the port that your sensor is plugged into, click on “Create Activity”, and select the type of sensor you’re using. Get the spring started in its oscillations and click “start.” Let the motion continue for about 20 periods and click “stop.”

Using DataStudio’s curve-fit, fit a sine curve to the plot and obtain from it the period of the oscillation, and the uncertainty in the period.
Open Excel and record the mass and period in a table, along with their uncertainties.
Repeat this process for at least four other masses, ranging from 10 g to 200 g, recording your results in the Excel table.
In Excel, make a plot of P2 vs. m. According to our equation above, this should yield a straight line with a slope of 4 ks. Does a straight line fit the data?

Be sure to select “display equation on chart.” Does the slope match the expected slope?

III. Comparing Experiment and Theory
Modify the VPython program to calculate periods for the same spring constant and masses used in the experiment. Plot the results (as a different series) on the same graph as the experimental data (as P2 vs. m). To compare the two data sets, we should include the uncertainties. The theoretical values are not measurements and so do not contain any random errors (although they may be in error for other reasons), so we need to include the uncertainties only in the experimental data points. If the uncertainty in P is given by P, then the uncertainty in P2 is equal to 2PP. Indicate on the plot the size of these uncertainties on the plot.

Do the two approaches agree? Do you notice any systematic difference? In what aspects are the results the same and in what ways do they differ?

HINT: There should be one way in which the experimental data and the Vpython data do NOT match. It is your job to figure out, and possibly test, what the cause for the discrepancy is. Discuss your ideas with your instructor.
_1451284481.unknown

_1451284540.unknown

_1484487759.unknown

_1451284435.unknown

